

MANOHARBHAI PATEL COLLEGE OF ARTS, COMMERCE & SCIENCE

SADAK ARJUNI, GONDIA-441807

(AFFILIATED TO R.T.M.NAGPUR UNIVERSITY)

QnM-2.2.1: The institution assesses the learning levels of the students and organises special Programmes for advanced learners and slow learners

MANOHARBHAI PATEL COLLEGE OF ARTS, COMMERCE & SCIENCE

SADAK ARJUNI, Dist. Gondia.(Maharashtra) 441807

Affiliated to Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur

E-mail:mbpatelsadakarjuni@gmail.com Phone (07199) 233224

336 Ref.No. MBPC/ /20222023

Date: 2810212023

Declaration

The information, reports, true copies of the supporting documents, numerical data, etc. furnished in this file is verified by IQAC and found correct.

Hence this certificate.

Mr. A. M. Patil
IQAC Coordinator
Manoharbhai Patel College
Sadak Arjuni

Dr. A. S. Dwivedi Chairman IQAC and Principal Manoharbhai Patel College Sadak Arjuni

The Department of joint venture of Chemistry, Zoology, Botany for the preparation of JAM exam was organized. Advanced learners from the final year of Bachelor of science were selected and given extra coaching from the perspective of JAM exam. A regular progress of the students was checked by test conducted during the coaching. This course conducted apart from regular curricula proved very fruitful and helped students to great extent.

Summer 17-18	Arti Pisaram. Chandwar	20150166022967 21
Summer 17-18	Chandani Eknath Dogarwar	
Summer 17-18	Disha Dattprasad Bansod	20150166022954 66
Summer 17-18	Nidhi Rajenderasingh Kachhwaya	20150166022964 46
Summer 17-18	Neleema Dodhram Vaidhya	20150166022967 52
Summer 17-18	Rajani Bhaulal Turkar	20150166022953 15
Summer 17-18	Rashmi Siddharth Ramteke	20150166022953 31
Summer 17-18		20150166023961 03
Summer 17-18	Sampkala Chetram Nikesar	20150166023756 87
Summer 17-18	Shital Shekar Shivankar	20150166022949 62
Summer 17-18	Akash Bhojraj Dogarwar	20150166022957 41
	Amar Omprakash Shahare	20150166022953 46
Summer 17-18	Amol Jagdish Choudhary	20150166022949 85
Summer 17-18	Ayush Hetram Ganvir	20105066023755 05

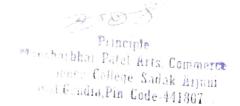
A508

Principle

Manuharbhai Patel Arts, Commerce

8 5 - - - Callege, Sadak Arjum

adia.rin Code 141807



JAM Coaching

(Joint Admission for Master Coaching Course)

The Department of joint venture of Chemistry, Zoology, Botany for the preparation of JAM exam was organized. Advanced learners from the final year of Bachelor of science were selected and given extra coaching from the perspective of JAM exam. A regular progress of the students was checked by test conducted during the coaching. This course conducted apart from regular curricula proved very fruitful and helped students to great extent.

Summer 18-19	ASHWIN ASHIRWAD LONARE	2015016602376090
Summer 18-19	AVINASH ASHOK KAPGATE	2017307420405
Summer 18-19	BHAGYASHRI SHANKAR CHUTE	20173074203931
Summer 18-19	DIKSHIT HIRALAL LANJE	2015016602295610
Summer 18-19	DIPALI CHANRABHAN FUNDE	2015016602294820
Summer 18-19	DIVYA SURESH RAUT	2015016602295650
Summer 18-19	GAUTAMI DHANAJAY VAIDYA	2015016602296690
Summer 18-19	JITENDRA ZITU NARETI	20173074204012
Summer 18-19	KAJAL VIJAY TEMBHURNE	2015016602296230
Summer 18-19	KALYANI DILIP KORE	20173074203946
Summer 18-19	KEMILA RAMESH CHANDEWAR	201301660049576
Summer 18-19	KUNAL CHANDRBHAN BADOLE	20173074204016
Summer 18-19	KUSUMBAI ZALU FULLUKE	20173074203952
Summer 18-19	MAHENDRA RIMLAL PARSURAMKAR	NU/A15/83941
Summer 18-19	MRUNALI DEWANAND MESHRAM	2015016602295590
Summer 18-19	NILAM ARUN SHAHARE	2015016600786590
Summer 18-19	NITA PYARELAL MADAVI	20173074203967
Summer 18-19	PAWAN JAIPAL BHANDARKAR	20173074204022
Summer 18-19	PRAFUL SAGAR RAMTEKE	20173074204023
Summer 18-19	PRIYANKA RAJIRAM HATTIMARE	2015016602295620
Summer 18-19	PUNAM LEHANDAS SATDEVE	2013016600322270
Summer 18-19	RAJNI PREMLAL BRAMHANKAR	2015016602365650
Summer 18-19	RAVINDRA RUPVILASBAPU KURSUNGE	2015016602295080

	SAURABH NOKLAL VAIDYA	2015016602365470
Summer 18-19	CUNITA DEORAM TARONE	20173074203993
Summer 18-19	TOMECHWAR SURESH LANIE	20173074204034
Summer 18-19	TOPIESTIVIA	

Principle
Mancharbhai Patel Arts, Commerce
& Science College, Sadak Arjuni
Dist.Gondia,Pin Code-441807.

(Joint Admission for Master Coaching Course)

Summer 19-20	AKASH TIRTHANAND PANCHABHAI	2017307420401
Summer 19-20	APARNA DURYODHAN MESHRAM	2015016602375860
Summer 19-20	ASHWINI MANIRAM SHENDE	20173074203930
Summer 19-20	BHARTI NARENDRA KHOTELE	20181074206125
Summer 19-20	BHRUNALI RAJKUMAR LANJE	20181074206126
Summer 19-20	BHUMESHWARI GOWARDHAN NEWARE	20181074206127
Summer 19-20	CHANDATAI SHIVCHARAN BENDWAR	20181074206129
Summer 19-20	CHETAN JAYLAL RAUT	20181074206130
Summer 19-20	DAMINI ANANDRAO CHANDEWAR	20181074206133
Summer 19-20	DIPALI BHAURAO BRAMHANKAR	2015016602363780
Summer 19-20	GAYATRI TARACHAND HARSHE	20181074206140
Summer 19-20	HIMANI MANOHAR BADOLE	20181074206141
Summer 19-20	JAYSHRI DIPAK DONODE	2015016602296340
Summer 19-20	JAYSHRI JIVAN NAIK	20181074206144
Summer 19-20	KAJAL DEORAM BHENDARKAR	20181074206148
Summer 19-20	KALYANI KAILSH BRAMHANKAR	20181074206150
Summer 19-20	KARISHMA DEVDAS WALTHARE	20181074206151
Summer 19-20	KARISHMA SHIVDAS BOLANE	20181074206152
Summer 19-20	KOMESH CHAITRAM ZODE	201730742044015
Summer 19-20	NALINA RAMESH BHENDARKAR	20173074203963
Summer 19-20	NILIMA NANDLAL THER	20181074206166
Summer 19-20	POOJA DHANRAJ BRAMHANKAR	20181074206170
Summer 19-20	PRAGATI BHAURAO GAHANE	20181074206172
Summer 19-20	PRANJALI DURWAS ARSODE	20173074203972
Summer 19-20	PRASHANT ANANDRAO UIKEY	20181074206222
Summer 19-20	RAHUL RAJKUMAR WASNIK	A15/88440
	RUCHIKA MOHAN KANHAKE	20181074206185
Summer 19-20	RUKMINI RAMESH CHUTE	20181074206186
Summer 19-20	SATYASHILA GOWARDHAN BRAMHANKAR	
Summer 19-20	SEEMA VINOD KATRE	2015016602295530
Summer 19-20	SHITAL MOHANLAL BANKAR	20181074206193
Summer 19-20		20181074206194
Summer 19-20	SHRIYA PRAKASH JANBANDHU	20181074206196
Summer 19-20	SONALI ZAMRAJ SHENDE	20181074206199

Principle
Mancharbhai Patel Arts, Commany
& Science College, Sadak Armid
Dist. Condia, Pin Code-441807

Summer 19-20	SUSHAMA GIRDHARI KAPGATE	20181074206204
Summer 19-20	SUSHAMA HOMRAJ TRLE	20181074206205
Summer 19-20	SUSHAMA KRISHNA GABHANE	20181074206206
Summer 19-20	TEJASWINI YOGRAJ KIRNAPURE	20181074206207
Summer 19-20	VISHAKHA OMKAR KOCHE	20181074206210
Summer 19-20	YIGITA RAJU BHENDARKAR	20181074206213
Summer 19-20	VRUSHALI VIKAS BAGDE	20181074206211

Manoharbhai Principle
& Science College, Sadak Agnni
Code 411807

JAM Coaching

(Joint Admission for Master Coaching Course)

Summer 20-21	ANITA YASHWANTRAO SHIVANKAR VATSALA	20191074212451
Summer 20-21	ANJALI RAJKUMAR SHENDE MARIYA	20181074206122
Summer 20-21	ARTI RAMESHWAR CHINDHALORE MAMTA	20191074212452
Summer 20-21	BHAGYASHRI JAGESHWAR RAUT JAYASHRI	20191074212455
Summer 20-21	BHUMESHWAI HANWAT DONODE REKHABAI	20173074203933
Summer 20-21	BHUMESHWARI RAMU DHANBHATE SUNITA	20181074206128
Summer 20-21	CHANDANI MARKAND UIKEY NALINA	20173074203934
Summer 20-21	CHANDANI SUNIL KORE SUNITA	20191074212457
Summer 20-21	CHETNA PRAMOD IRALE BHUMESHWARI	20181074206131
Summer 20-21	DHANSHRI PANDHARI GAUTAM USHA	20191074212459
Summer 20-21	DIKSHA RAJKUMAR PETKULE DWARKA	20181074206136
Summer 20-21	DIPALI HIVINDRAKUMAR RAUT POURNIMA	20173074203940
Summer 20-21	GAYATRI NARAYAN HATTIMARE PUSHPA	20191074212463
Summer 20-21	HASINA DIGAMBAR PARDHI MUNESHWARI	20191074212465
Summer 20-21	HEMLATA RATIRAM BRAMHANKAR KUSUM	20191074212466
Summer 20-21	JAGRATI DOMESHWAR RAHANGDALE ARCHANA	20191074212467
Summer 20-21	JAYSHREE SUKRAM CHAUDHARI SULOCHANA	20173074203945
Summer 20-21	JINA SURESH BODHANKAR NIRMALA	20181074206145
Summer 20-21	JITESHRI RAJKUMAR RAUT REKHA	20191074212468
Summer 20-21	JOSNA PAWAN CHUTE REKHA	20191074212469
Summer 20-21	KAJAL HIRALAL SHENDE PANCHAFULA	20191074212470
Summer 20-21	KAJAL ARUN SHAHARE GUNWANTA	20181074206147
Summer 20-21	KARISHMA MUKUNDA MENDHE LATA	20191074212473
Summer 20-21	KARISHMA CHANDAN MANKAR PUSHPA	20191074212471
Summer 20-21	KHUSHBU SUKHDEV KORE CHHAYA	20181074206154
Summer 20-21	KIRTI VIJAY ZODE MANDA	20191074212476
Summer 20-21	LINA VINOD GAHANE VIDHYA	20191074212478
Summer 20-21	LOKESHWARI YUVRAJ RAUT SHANU	20181074206158
Summer 20-21	MADHAVI ARVIND ZODE UTTARA	20181074206159

Principle

Manohabhai Patel Arts, Command

Science College, Sadak Aright

Bist Gendia, Pin Code-441807

Summer 20-21	MANISHA SURESH YERNE REKHA	20181074206160
Summer 20-21	MAYURI DEVANAND LANJEWAR SUDBHAKALA	20191074212479
Summer 20-21	MINAKSHI WASUDEO NAROTE DEVAKABAI	20191074212481
Summer 20-21	MINAKSHI DEVDAS MESHRAM VARSHA	20181074206161
Summer 20-21	MONIKA VILAS UPARIKAR ALKA	20191074212483
Summer 20-21	MONIKA TEKCHAND LANJE LEELA	20191074212482
Summer 20-21	NEETA BHUMESHWAR KADUKAR BHUMITA	20191074212486
Summer 20-21	NEHA KRISHNA SHIVANKAR UMA	20191074212485
Summer 20-21	NILAM KAILASH GONDANE ADIKSHA	20191074212486
Summer 20-21	NILIMA LEKHARAM KORE LEELA	
Summer 20-21	PALLAVI TARACHAND SHENDE SUNITA	20191074212487
Summer 20-21	PAYAL SANJAY BAGDE SUNITA	20191074212492
Summer 20-21	PRANALI JAGDISH KORE JOSHNA	20191074212493
Summer 20-21	PRANALI HANSRAJ HATZADE LALITA	20191074212496
Summer 20-21	PRATIKSHA GANGADHAR KARPATE SUNITA	20181074206173
	PRIYANKA JANIRAM KHANDWAYE KHELAN	20191074212497
Summer 20-21	PRIYANKA PRAKASH MOHURLE KIRAN	20191074212500
Summer 20-21	PRIYANKA NAJUKRAM ZINGARE KHEMUTAI	20181074206179
Summer 20-21		20181074206178
Summer 20-21	PUJA HEMRAJ TEKAM KALAVATI	20181094001098
Summer 20-21	RIMA NARESH NAGRIKAR VARSHA	20173074203981
Summer 20-21	ROHINI BASURAJ UKEY GITA	20181074206181
Summer 20-21	RUPALI DHANRAJ LANJEWAR USHA	20181074206188
Summer 20-21	RUPALI YADORAO DOYE MANDA	20191074212505
Summer 20-21	RUPALI RAMESH MANDALE ANUSAYA	20181074206189
Summer 20-21	SAKSHI HIRALAL MESHRAM ARCHANA	20173074203984
Summer 20-21	SAKSHI NAYANKUMAR BADOLE CHHAYA	20191074212506
Summer 20-21	SAPNA SHALIKRAM MUNGMODE VAISHALI	
Summer 20-21	SARIKA LAXMAN WANJARI KALPANA	20191074212507
Summer 20-21	SHILPA SIDDHARTH MESHRAM RAMESHILA	20191074212508
Summer 20-21	SHITAL MADHORAO MUNGMODE SAVITA	20191074212510
Summer 20-21	SHITAL NANDKISHOR MESHRAM SUNANDA	20191074212512
Summer 20-21	SHRUTI KRUSHNA PATLE KUNDA	20191074212513
Summer 20-21	SNEHA WAKTU ALONE POONAM	20181074206197
Summer 20-21	SONALI CHANDRASEN KAPGATE LILA	20191074212519
Summer 20-21	SUNITA RAMKRUSHNA SAYAM SHASHIKALA	20173074203992
Summer 20-21	SWATI BABURAO MATALE DURGA	20181071502392
		20173074203994

Principle
Manoharbhai Patel Arts, Commerce
& Science College, Sadak Arjunl
Dist.Condia,Pin Code-441807.

Manoharbhai Patel College of Arts, Commerce & Science

Sadak Arjuni, Dist. Gondia-441807

JAM-2018

Test Paper of Chemistry

Multiple choice questions Total- 51

- 1. The most convenient method to prepare an aminecontaining one carbon atom less is
 - Al Gabriel phthalimide synthesis
 - B] Reductive amination of aldehydes
 - C] Hofmann bromamide reaction
 - D] Reduction of isonitriles
- 2. Reduction of aromatic nitro compounds using Sn and HC1 gives
 - A] Aromatic primary amines
 - B] Aromatic secondary amines
 - C] Aromatic tertiary amines
- D] Aromatic amides
- 3. Amine that cannot be prepared by Gabriel phthalimide synthesis is
 - A] Aniline

B] Benzyl amine

C] Methyl amine

- Dl iso butylamine
- 4. Tertiary amines have lowest boiling points amongest isomeric amines because
 - A] They have highest molecular mass
 - B] They do not form hydrogen bonds
 - C] They are more polar in nature
- D] They are most basic in nature

& Science College, Sadak Arjuni

(Dist.Gondia) Pin Code, 441807

5. The decreasing order of boiling points of ethyldimethylamine, n-butylamine and diethyla-mine is n-Butylamine > Diethylamine > Ethyldimethylamine. This trend of boiling point can be explained as A] Boiling point increases with increase in molecular mass B] Tertiary amines have highest boiling point due to highest basicity C] Intermolecular hydrogen bonding is maximum in primary amines and absent in tertiary amines D] Intramolecular hydrogen bonding is present in tertiary amines 6. Basic strength of different alkyl amines depends upon Al +I effect B] Steric effect C] Solvation effect D] All of these 7. Primary amines react with benzoyl chloride to give A] Benzamides B] Ethanamides C1 Imides D] Imines 8. Acetylation of a secondary amine in alkaline medium yields A] N, N-dialkylacetamide B] N, N-dialkylamine C] N, N-dialkylamide D] Acetyl dialkylamine 9. Which of the following amines will give carbylamines reaction? A] $(C_2H_5)_3N$ only B] $(C_2H_5)_2NH$ only C] C₂H₅NH₂ only D] C₃H₇NHC₂H₅ only 10. Which of the following will form isocyanide on reaction with CHCl₃ and KOH? A] C₆H₅NHCH₃ B] CH₃C₆H₄NH₂ $C C_6H_5NHC_4H_9$ D] $C_6H_5N(C_2H_5)_2$ 11. Which of the following compounds cannot be identified by carbylamine test? A] CH₃CH₂NH₂B] (CH₃)₂CHNH₂

C $C_6H_5NH_2D$ $C_6H_5NHC_6H_5$

12. Hofmann bromamide degradation reaction is shownby

Al ArNH₂

B] ArCONH₂

Cl ArNO2

D]ArCH₂NH₂

13. Which of the following is used as Hinsberg's reagent?

 $A \mid C_6H_5SO_2CI \mid B \mid C_6H_5SO_3H$

C] C₆H₅NHCH₃ D] C₆H₅COCH₃

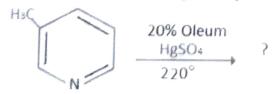
- 14. The reaction of benzenesulphonyl chloride with ethylamine yields
 - A] N-ethylbenzenesulphonamide, insoluble in alkali
 - B] N, N-diethylbenzenesulphonamide, soluble in alkali
 - C] N, N-diethylbenzenesulphonamide, insoluble in alkali
 - D] N-ethylbenzenesulphonamide, soluble in alkali

Principal Manoharbhai Patel Arts, Commerce & Science College, Sachik Arjuni (Dist. Gendia) Pin Code- 441807

- 15. Which of the following amines does not react with Hinsberg's reagent?

 A] CH₃CH₂-NH₂ B] CH₃-NH-CH₃

 C] (CH₃CH₂)₃N D] All of these


 16. Primary, secondary and tertiary amines may be separated by using A] Iodoform B]Acetone

 C] Benzenesulphonyl chloride D] Acetyl chloride

 17. Which of the following statements is *correct*?
- A] Pyridine is a tertiary amine.
- B] Pyrrole has less aromatic character than furan.
- C] Pyridine is isoelectronic with benzene.
- D] Pyrrole is a strong base.
- 18. What is the correct order of reactivity (most reactive first) of pyrrole, furan and thiophene towards electrophiles?
 - A]furan > pyrrole > thiophene
 - B] furan > thiophene > pyrrole
 - C] thiophene > pyrrole > furan
 - D] pyrrole > furan > thiophene
- 19. Nitration of pyrrole is best carried out using:
- A] nitric acid.
- B] ammonium nitrate.
- C] concentrated nitric and sulfuric acids.
- D] acetyl nitrate.
- 20.If you wanted to carry out an electrophilic substitution in pyridine, an initial step could be to react pyridine with H_2O_2 in acetic acid. What happens in this step?
- A] 2-Hydroxypyridine is formed.

Principal
Manoharbhai Pafel Arts, Commerce
& Science College, Sadak Arjuni
(Dist.Gondia) Pin Code-441807

- B] Pyridine-N-oxide is formed.
- C] 1,4-Dihydropyridine is formed.
- D] 2-Pyridone is formed.
- **21.**If solvent is non polar ans electron transition is $\pi \Rightarrow \pi *$ which type of shift are seen in graph?
- A. Hypso chromich shift
- B. Red shift
- C. Blue shift
- D. A and C
- 22. In Fischer-indole synthesis of 2-phenylindole, starting materials used are :
- (A) Phenyl hydrazine and acetophenone (B) Phenyl hydrazine and benzaldehyde
- (C) Phenyl hydrazine and acetone (D) Phenyl hydrazine and acetaldehyde
- 23. Reaction of an organolithium reagent with an aldehyde gives:
- A] Alcohol B]Ketone
- C] Ether D] Epoxide
- 24. Which of the following electrophilic substitution reaction is not possible in pyridine?
- a) Nitration
- b) Sulphonation
- c) Bromination
- d) Friedel craft reaction
- 25. Which of the following is the product for the below reaction?

a) 3- methyl-pyridine-5-sulphonic acid

Principat Manobarthai Patel Arts, Commerce & Science College, Sadak Arjuni (Dist.Coudia) Pin Code: 441807

2000

b) 3- methyl-pyridine-4-sulphonic acid c) 3- methyl-pyridine-6-sulphonic acid d) 3- methyl-pyridine-1-sulphonic acid 26. Which of the following is a not a five membered ring? a) Pyridine b) Pyrrole c) Furan d) Thiophene 27.In Dumas' method of estimation of nitrogen 0.35 g of an organic compound gave 55 mL of nitrogen collected at 300 K temperature and 715 mm pressure. The percentage composition of nitrogen in the compound would be (Aqueous tension at 300 K = 15 mm) (A) 14.45 **(B)** 15.45 (C) 16.45 **(D)** 17.45 28.In Kjeldahl's method, ammonia from 5 g of food neutralizes 30 cm³ of 0.1 N acid. The percentage of nitrogen in the food is ... (A) 8.4**(B)** 0.84

(C) 1.68

(D) 16.8

29 .The reagent used in dumas method is:

Aferrous acid

Bcuprous oxide

Manoharbhal Patel Arts, Commerce & Science College, Sadak Arjuni (Dist. Goudia) Pin Code- 441807

C] N, N-dialkylamide D] Acetyl dialkylamine
9. Which of the following amines will give carbylaminesreaction?
A] $(C_2H_5)_3N$ only B] $(C_2H_5)_2NH$ only
C] $C_2H_5NH_2$ only D] $C_3H_7NHC_2H_5$ only
10. Which of the following will form isocyanide on reaction with CHCl ₃ and
KOH?
A] $C_6H_5NHCH_3$ B] $CH_3C_6H_4NH_2$
C] $C_6H_5NHC_4H_9$ D] $C_6H_5N(C_2H_5)_2$
11. Which of the following compounds cannot be identified by carbylamine test
A] CH ₃ CH ₂ NH ₂ B] (CH ₃) ₂ CHNH ₂
C] $C_6H_5NH_2D$] $C_6H_5NHC_6H_5$
12. Hofmann bromamide degradation reaction is shownby
A] ArNH ₂ B] ArCONH ₂
B) mooning
C] ArNO ₂ D]ArCH ₂ NH ₂
13. Which of the following is used as Hinsberg's reagent?
A] C ₆ H ₅ SO ₂ Cl B] C ₆ H ₅ SO ₃ H
C] C ₆ H ₅ NHCH ₃ D] C ₆ H ₅ COCH ₃
14. The reaction of benzenesulphonyl chloride with ethylamine yields
A] N-ethylbenzenesulphonamide, insoluble in alkali
B] N, N-diethylbenzenesulphonamide, soluble in alkali
CLN N diethylbengenegylphenewide in alkali
C] N, N-diethylbenzenesulphonamide, insoluble in alkali
D] N-ethylbenzenesulphonamide, soluble in alkali
15. Which of the following amines does not react with Hinsberg's reagent?
A] $CH_3CH_2-NH_2$ B] $CH_3-NH-CH_3$
C] $(CH_3CH_2)_3N$ D] All of these
16. Primary, secondary and tertiary amines may beseparated by using
A] Iodoform B]Acetone
C] Benzenesulphonyl chloride D] Acetyl chloride
7. Which of the following statements is <i>correct</i> ?
satisfies to the same many statements is correct.

A] Pyridine is a tertiary amine.

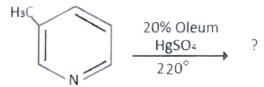
B] Pyrrole has less aromatic character than furan.

C] Pyridine is isoelectronic with benzene.

D] Pyrrole is a strong base.

Principal

Manobarbhai Patel Arts, Commerce
& Science College, Sadak Arjuni
(Dist.Gondia) Pin Code- 441807


18. What is the correct order of reactivity (most reactive first) of pyrrole, furan and thiophene towards electrophiles?

A]furan > pyrrole > thiophene

- B] furan > thiophene > pyrrole
- C] thiophene > pyrrole > furan
- D] pyrrole > furan > thiophene
- 19. Nitration of pyrrole is best carried out using:
- A] nitric acid.
- B] ammonium nitrate.
- C] concentrated nitric and sulfuric acids.
- D] acetyl nitrate.
- 20.If you wanted to carry out an electrophilic substitution in pyridine, an initial step could be to react pyridine with H_2O_2 in acetic acid. What happens in this step?
- A] 2-Hydroxypyridine is formed.
- B] Pyridine-*N*-oxide is formed.
- C] 1,4-Dihydropyridine is formed.
- D] 2-Pyridone is formed.
- **21.**If solvent is non polar ans electron transition is $\pi \Rightarrow \pi *$ which type of shift are seen in graph?
- A. Hypso chromich shift
- B. Red shift
- C. Blue shift
- D. A and C.

Principal
Manoharbhar Patel Arts, Commerce
& Science College, Sadak Arjuni
(Dist.Gondia) Pin Code: 441807

- 22. In Fischer-indole synthesis of 2-phenylindole, starting materials used are :
- (A) Phenyl hydrazine and acetophenone (B) Phenyl hydrazine and benzaldehyde
- (C) Phenyl hydrazine and acetone (D) Phenyl hydrazine and acetaldehyde
- 23. Reaction of an organolithium reagent with an aldehyde gives:
- A] Alcohol B]Ketone
- C] Ether D] Epoxide
- 24. Which of the following electrophilic substitution reaction is not possible in pyridine?
- a) Nitration
- b) Sulphonation
- c) Bromination
- d) Friedel craft reaction
- 25. Which of the following is the product for the below reaction?

- a) 3- methyl-pyridine-5-sulphonic acid
- b) 3- methyl-pyridine-4-sulphonic acid
- c) 3- methyl-pyridine-6-sulphonic acid
- d) 3- methyl-pyridine-1-sulphonic acid
- 26. Which of the following is a not a five membered ring?
- a) Pyridine
- b) Pyrrole
- c) Furan
- d) Thiophene

Principal Manoharbhai Patel Arts, Commerce & Science College, Sadak Arjuni (Dist.Gondia) Pin Code- 441807

27.In Dumas' method of estimation of nitrogen 0.35 g of an organic compound gave 55 mL of nitrogen collected at 300 K temperature and 715 mm pressure. The percentage composition of nitrogen in the compound would be
(Aqueous tension at $300 \text{ K} = 15 \text{ mm}$)
(A) 14.45
(B) 15.45
(C) 16.45
(D) 17.45
28.In Kjeldahl's method, ammonia from 5 g of food neutralizes 30 cm 3 of 0.1 N acid. The percentage of nitrogen in the food is
(A) 8.4
(B) 0.84
(C) 1.68
(D) 16.8
29 .The reagent used in dumas method is:
Aferrous acid
Bcuprous oxide
Cferric oxide
Dcupric oxide
30. In Carius method for the quantitative estimation of sulphur. it is estimated by
ABaS
BCaSO4
CBaSO4

DBaCl2

Principal
Manoharbhai Patel Arts, Commerce
& Science College, Sachik Arjuni
(Dist.Gondia) Pin Code- 441807

A] R-Mg X B] R-Li
$C]R_2Zn$
D] All of above
32. Grignard reagent react with CO ₂ to form
A] Acetic acid B] Acetone C] Ethanol D] Propan-2-ol
33. Methyl lithium react with ketone to gives
A] Ethanol B] Iso-propyl alcohol C] Tert- butyl alcohol D] n- propyl alchol
34. Reformatsky reaction leads to formation of
A] Acetone B] Carboxylic acid C] α,β -unsaturated acid D] None of these
35. Which of the following are organometallic reagents
(A) CH ₃ CH ₂ ONa (B) CH ₃ CH ₂ Li (C) CH ₃ CH ₂ BH ₂ (D) all of these
36. Which of the following "pictures" best represents the polarity of organometallic compounds ?
(A) R M (D) R+ M- (C) R- M+ (D) all of these
37.On which factors the vibrational stretching frequency of diatomic molecule depend? A) Force constant B) Atomic population C) Temperature D) Magnetic field

Manoharbhai Patel Arts, Commerce & Science College, Sadak Arjuni (Dist.Condia) Pin Code- 441807

31. What is Grignard reagent

- 38. The vibrations, without a center of symmetry are active in which of the following region?
- a) Infrared but inactive in Raman
- b) Raman but inactive in IR
- c) Raman and IR
- d) Inactive in both Raman and IR
- 39. What is the correct increasing order of stretching frequencies for $C \equiv C$, C = C and C C?

a)
$$C - C > C = C > C \equiv C$$

b)
$$C \equiv C > C = C > C - C$$

c)
$$C - C > C = C < C \equiv C$$

d)
$$C \equiv C < C - C > C = C$$

- 40. The frequency of vibration of a bond is a function of which factor?
- a) Force constant of the bond
- b) Masses of the atoms involved in bonding
- c) Force constant of the bond and Masses of the atoms
- d) Bond order
- 41. Which of the following statements is true concerning infrared spectroscopy?
- A] IR spectroscopy is useful in determining the size and shape of a compound's carbon skeleton.
- B] An IR spectrometer shines infrared light on a compound and records the positions where the light is blocked by the compound. This results in the spectrum's peaks.
- C] When the infrared light frequency matches the frequency of bond vibration in a molecule, a peak is recorded on the spectrum.
- D] Functional groups can be identified by looking in the fingerprint region of the spectrum

Principal
Manoharbhai Patel Arts, Commerce
& Science College, Sadak Arjuni
(Dist.Gondia) Pin Code- 441897

Approximately where would a carbonyl peak be found on an IR spectrum?

Possible Answers:

- 42. The peak location will vary depending on the compound being analyzed.
- A] 1000cm⁻¹
- B] 1700cm⁻¹
- C] 2800cm⁻¹

D] 2500 Cm-1

- 43. Normal mode vibration in NH₃ molecule is
- A] 5 B] 6 C] 4 D] 2
- 44. Normal mode of vibration of linear molecule is
- A] 3N 5 B] 3N 6 C] 3N 4 D] Both A & B
- 45. Select the wavelength range corresponding to UV-visible region.
- (A) 400-800 nm
- (B) 200-800 nm
- (C) 25 µm-2.5 µm
- (D) $2.5 \, \mu m 1 mm$
- 46. The possible transitions for water molecule in UV-visible region are
- $(A) \sigma \rightarrow \sigma^*$
- (B) $n \rightarrow \pi^*$, $\pi \rightarrow \pi^*$
- (C) $\sigma \rightarrow \sigma^*$, $n \rightarrow \pi^*$
- (D) $n \rightarrow \sigma^*$

Principal
Manoharbhai Patel Arts, Commerce
& Science College, Sadak Arjuni
(Dist.Gondia) Pin Code- 441807

47. Molar extinction coefficient has units of (A) lit.mol⁻¹.cm⁻¹ (B) dl.g -1 cm -1 (C) No units (D) lit.g ⁻¹cm ⁻¹ 48. Which of the following statement is not correct? (A) Absorptivity changes with the intensity of the light (B) Absorbance is independent of intensity of the light (C) Absorbance has no units (D) Absorptivity is a constant and depends on the nature of the molecule 49. Which of the following leads to chemical deviation from Beer's law (A) Change in refractive index (B) Change in pH of the solution (C) Polychromatic radiation (D) Both a and b

50. Absorption spectra is a plot of

(A) Absorbance Vs Concentration

Principat
Manoharbhai Patel Arts, Commerce
& Science Coffege, Sachik Arjuni
(Dist.Gondia) Pin Code-441807

- (B) Absorbance Vs wavelength
- (C) % T Vs Wavelength
- (D) % T Vs Concentration
- 51. when absorption intensity of compound is decreased it is called
- A. Red shift
- B. Blue shift
- C. Hypochromic shift
- D. Hyperchromic shift

Principal
Manoharbhai Patel Arts, Commerce
& Science College, Sadak Arjuni
(Dist.Gondia) Pin Code- 441807

Manoharbhai Patel College of Arts, Commerce & Science Sadak Arjuni, Dist. Gondia-441807

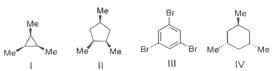
JAM 2017

CHEMISTRY - CY

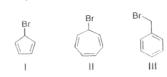
SECTION – A MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 - Q.10 carry one mark each.

- Q.1 The correct order of the boiling points of the compounds is
 - (A) $CH_4 > SiH_4 > SnH_4 > GeH_4$
 - (B) $SiH_4 > CH_4 > GeH_4 > SnH_4$
 - (C) $SnH_4 > GeH_4 > CH_4 > SiH_4$
 - (D) SnH₄ > GeH₄ > SiH₄ > CH₄
- Q.2 In the following Latimer diagram, the species that undergoes disproportionation reaction is


$$MnO_4^- \xrightarrow{+0.56} MnO_4^{2^-} \xrightarrow{+0.27} MnO_4^{3^-} \xrightarrow{+0.93} MnO_2 \xrightarrow{+0.15} Mn_2O_3 \xrightarrow{-0.25} Mn(OH)_2 \xrightarrow{-1.56} Mn$$

- (A) MnO₄²⁻
- (B) MnO₄3-
- (C) Mn₂O₃
- (D) $Mn(OH)_2$
- Q.3 A yellow precipitate is formed upon addition of aqueous AgNO3 to a solution of
 - (A) phosphite


(B) pyrophosphate

(C) metaphosphate

- (D) orthophosphate
- Q.4 The compounds having C3-axis of symmetry are

- (A) I, III and IV
- (B) I, II and III
- (C) I and III
- (D) III and IV
- Q.5 The correct order of rate of solvolysis for the following compounds is

(A) III > II > I

(A) 61

- (B) II > I > III
- (C) III > I > II
- (D) 11 > 111 > 1
- Q.6 In the following sequence of reactions, the overall yield (%) of O is

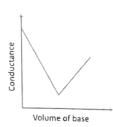
CY

2/(1

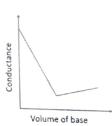
Manoharbhai Patel Arts, Commerce & Science College, Sadak Acjuni (Dist.Gondia) Pin Code-441807 Q.7 Catalytic hydrogenation of the following compound produces saturated hydrocarbon(s). The number of stereoisomer(s) formed is

- (A) 1
- (B)2
- (C) 3
- (D) 4
- 0.8 The number of normal modes of vibration in naphthalene is
 - (A) 55
- (B) 54
- (C) 48
- (D) 49
- Q.9 The number of degrees of freedom of liquid water in equilibrium with ice is
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- A straight line having a slope of $-\Delta U^0/R$ is obtained in a plot between
 - (A) lnK_p versus T

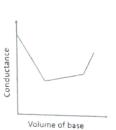
(B) lnK_C versus T

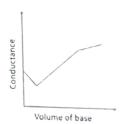

(C) lnK_p versus 1/T

(D) lnK_C versus 1/T


Q. 11 - Q. 30 carry two marks each.

Q.11 In a typical conductometric titration of a strong acid with a weak base, the curve resembles


(A)


(B)

(C)

(D)

- Q.12 The coordination number of Al in crystalline AlCl₃ and liquid AlCl₃, respectively, is
 - (A) 4 and 4
- (B) 6 and 6
- (C) 6 and 4
- (D) 3 and 6

- Q.13 The homogeneous catalyst used in water-gas shift reaction is
 - (A) PdCl₂

(C) [RhCl(PPh₃)₃]

- (D) [RuCl2(bipyridyl)2]
- Q.14 Nitrosyl ligand binds to d-metal atoms in linear and bent fashion and behaves, respectively, as
 - (A) NO+ and NO+
- (B) NO and NO
- (C) NO- and NO- (D) NO- and NO+
- 0.15 The metal ion (M²⁺) in the following reaction is

$$M^{2^+} + S^{2^-} \longrightarrow Black \ precipitate \xrightarrow{hot \ conc. \ HNO_3} White \ precipitate$$
(A) Mn^{2^+} (B) Fe^{2^+} (C) Cd^{2^+} (D) Cu^{2^+}

- Q.16 The correct order of wavelength of absorption (λ_{max}) of the Cr-complexes is (en = ethylenediamine)
 - (A) $[CrF_6]^{3-} > [Cr(H_2O)_6]^{3+} > [Cr(en)_3]^{3+} > [Cr(CN)_6]^{3-}$
 - (B) $[Cr(H_2O)_6]^{3+} > [CrF_6]^{3-} > [Cr(en)_3]^{3+} > [Cr(CN)_6]^{3-}$
 - (C) $[Cr(CN)_6]^{3-} > [Cr(en)_3]^{3+} > [Cr(H_2O)_6]^{3+} > [CrF_6]^{3-}$
 - (D) $[Cr(en)_3]^{3+} > [Cr(CN)_6]^{3-} > [Cr(H_2O)_6]^{3+} > [CrF_6]^{3-}$
- Q.17 The correct order of enthalpy of hydration for the transition metal ions is
 - (A) $Cr^{2+} > Mn^{2+} > Co^{2+} > Ni^{2+}$

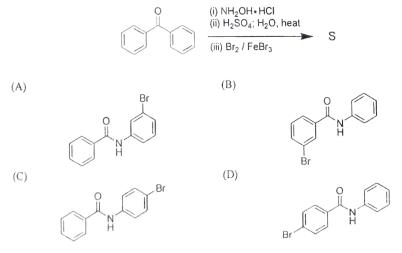
 - (B) $Ni^{2+} > Co^{2+} > Mn^{2+} > Cr^{2+}$ (C) $Ni^{2+} > Co^{2+} > Cr^{2+} > Mn^{2+}$
 - (D) $Cr^{2+} > Mn^{2+} > Ni^{2+} > Co^{2+}$
- Q.18 Among the following compounds, the pair of enantiomers is

Q.19 The number of proton NMR signals for the compounds P and Q, respectively, is

(A) 3 and 4

(A) I and IV

- (B) 3 and 5
- (C) 4 and 3
- (D) 5 and 4


CY

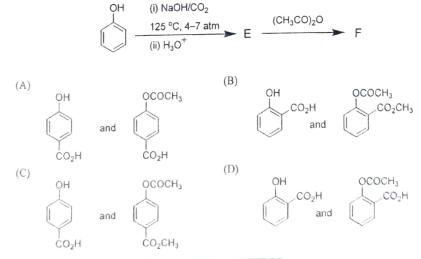
Q.20 The correct set of reagents for the following conversion is

- (A) (i) NaNH2/liq.NH3; (ii) NaNO2/dil. HCl; (iii) CuCN, heat
- (B) (i) HNO₃/H₂SO₄; (ii) Zn/HCl; (iii)) NaNO₂/dil. HCl; (iv) CuCN, heat
- (C) (i) Mg/ether, H₃O+; (ii) (EtO)₂CO; (iii) NH₄OH; (iv) PCI₅
- (D) (i) Mg/ether, H_3O^+ ; (ii) HNO_3/H_2SO_4 ; (iii) $NaNO_2/dil$. HCl; (iv) CuCN, heat

Q.21 The product R in the following reaction is

Q.22 The major product S of the following reaction is

5/11


Principal
Manoharbhai Patel Arts, Commerce
& Science College, Sailak Arjuni
(Dist, Comha) Pin Code 441807

Q.23 In the following reaction, the major product T is

Q.24 The following conversion is carried out using

- (A) hydroboration-oxidation followed by Jones oxidation
- (B) Wacker oxidation followed by haloform reaction
- (C) oxymercuration-demercuration followed by Jones oxidation
- (D) ozonolysis followed by haloform reaction

Q.25 In the following reactions, the major products E and F, respectively, are

Principal
Manoharbhar Patel Aris, Commerce
& Science College, Sadak Arjuni
(Dist.Condia) Pia Code- 441807

6/11

Q.26 $\frac{dy}{dx} = -\frac{y}{x}$ is a differential equation for a/an

(A) circle

(B) ellipse

(C) bell-shaped curve

(D) hyperbola

Q.27 Value of the given determinant is

- (A) 12
- (B) 0
- (C) 6
- (D) 12

Q.28 lonisation energy of hydrogen atom in ground state is 13.6 eV. The energy released (in eV) for third member of Balmer series is

- (A) 13.056
- (B) 2.856
- (C) 0.967
- (D) 0.306

For a first order reaction $A(g) \to 2B(g) + C(g)$, the rate constant in terms of initial pressure (p_0) and pressure at time $t(p_t)$, is given by

- (A) $\frac{1}{t} ln \frac{p_0}{p_t p_0}$ (B) $\frac{1}{t} ln \frac{2p_0}{3p_0 p_t}$ (C) $\frac{1}{t} ln \frac{3p_0}{p_t p_0}$ (D) $\frac{1}{t} ln \frac{3p_0}{3p_t p_0}$

For a particle in one-dimensional box of length L with potential energy V(x) = 0 for L > x > 0 and $V(x) = \infty$ for $x \ge L$ and $x \le 0$, an acceptable wave function consistent with the boundary conditions is (A, B, C and D are constants)

- (A) $A\cos\left(\frac{n\pi x}{L}\right)$
- (B) $B(x + x^2)$ (C) $Cx^3(x L)$
- (D) $\frac{D}{\sin(\frac{n\pi x}{L})}$

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q. 31 - Q. 40 carry two marks each.

- Q.31 The "heme" containing protein(s) is/are
 - (A) cytochrome C
- (B) hemocyanin
- (C) hemerythrin
- (D) myoglobin

Q.32 Among the following, the species having see-saw shape is/are

- (A) SF₄
- (B) XeF₄
- (C) CIF₄+
- (D) CIF₄-

Q.33 The indicator(s) appropriate for the determination of end point in the titration of a weak acid with a strong base is/are

(A) phenolphthalein

(B) thymol blue

(C) bromophenol blue

(D) methyl orange

CY

7/11

Manoharbhai Patel Arts, Commerce & Science Coffege, Sadak Arjuni (Dist.Gondia) Pin Code- 441807

- Q.34 Jahn-Teller distortion is observed in octahedral complexes with d-electron configuration of
 - (A) d⁵- high spin
- (B) d5- low spin
- (C) d6- high spin
- (D) d6-low spin
- Q.35 Among the following, the correct statement(s) is/are
 - (A) Guanine is a purine nucleobase
 - (B) Glycine and proline are achiral amino acids
 - (C) DNA contains glycosidic bonds and pentose sugars
 - (D) Sucrose is a non-reducing sugar
- Q.36 The INCORRECT statement(s) among the following is/are
 - (A) $[4\pi + 2\pi]$ cycloaddition reactions are carried out in presence of light
 - (B) $[2\pi + 2\pi]$ cycloaddition reaction between a keto group and an alkene is photochemically allowed
 - (C) $[4\pi + 2\pi]$ cycloaddition reactions are thermally allowed
 - (D) Transoid dienes undergo Diels-Alder reactions
- Q.37 The following conversion is an example of

- (A) oxy-Cope rearrangement
- (B) sigmatropic rearrangement
- (C) Claisen rearrangement
- (D) pericyclic reaction
- Q.38 IR active molecule(s) is/are
 - (A) CO₂

(B) CS₂

(C) OCS

- (D) N₂
- Q.39 Intensive variable(s) is/are
 - (A) temperature

(B) volume

(C) pressure

- (D) density
- Q.40 Wave nature of electromagnetic radiation is observed in
 - (A) diffraction

- (B) interference
- (C) photoelectric effect
- (D) Compton scattering

CY

8/14

SECTION ~ C

NUMERICAL ANSWER TYPE (NAT)

Q.	41	- Q.	50	carry	one	mark	each.
----	----	------	----	-------	-----	------	-------

- Q.41 The number of isomeric structures of di-substituted borazine (B₁N₃H₄X₂) is
- Q.42 The number of S-S bond(s) in tetrathionate ion is _____
- Q.43 The number of unpaired electron(s) in K₂NiF₆ is
- Q.44 The number of reducing sugars among the following is _____

- Q.45 The maximum number of dipeptides that could be obtained by reaction of phenylalanine with leucine is _____
- Q.46 Among the following, the number of aromatic compound(s) is

Q.47 At an operating frequency of 350 MHz, the shift (in Hz) of resonance from TMS (tetramethylsilane) of a proton with chemical shift of 2 ppm is ______

CY

2003

9/11

Principal
Manufiarbhai Paict Arts, Commerce
& Science College, Sadak Arjani
(Dist Condia) Pin Code: 441807

combustion of cyclopropane and propens a	are
At 298 K and 1 atm, the molar enthalpies of combustion of cyclopropane and propene at -2091 kJ mol ⁻¹ and -2058 kJ mol ⁻¹ , respectively. The enthalpy change (in kJ mol ⁻¹) for the conversion of one mole of propene to one mole of cyclopropane is	the
conversion of one more of property of	

Q.49	For a cell reaction, $Pb(s) + Hg_2Cl_2(s) \rightarrow PbCl_2(s) + 2Hg(l)$, entropy change (in J mol ⁻¹ K ⁻¹) for the reaction is	$\left(\frac{\partial E^{0}}{\partial T}\right)_{p}$	is	1.45×10 ⁻⁴	VK-	The
	[Given: $1 \text{ F} = 96500 \text{ C mol}^{-1}$]					

	For a reaction $2A + B \rightarrow C + D$, if rate of consumption of A is 0.1 mol L ⁻¹ s ⁻¹ , the rate of production
Q.50	For a reaction $2A + B \rightarrow C + D$, if rate of consumption of A is
	of C (in mol $L^{-1}s^{-1}$) is

Q. 51 - Q. 60 carry two marks each.

Q.51 The standard reduction potentials of Ce^{4+}/Ce^{3+} and Fe^{3+}/Fe^{2+} are 1.44 and 0.77 V, respectively. The log₁₀K (K is the equilibrium constant) value for the following reaction is _____ (final answer should be rounded off to two decimal places)

$$Ce^{4+} + Fe^{2+}$$
 $Ce^{3+} + Fe^{3+}$ [Given: $RT/F = 0.0257 V$]

Q.52 A radioactive element undergoes 80% radioactive decay in 300 min. The half-life for this species in minutes is _

Q.53 Silver crystallizes in a face-centered cubic lattice. The lattice parameter of silver (in picometer) is

[Given: Avogadro's number = 6.023×10^{23} mol⁻¹, molar mass of silver = 107.87 g mol⁻¹ and density of crystal = 10.5 g cm^{-3}]

Q.54 The amount of bromine (atomic wt.= 80) required (in gram) for the estimation of 42.3 g of phenol (molecular wt. = 94 g mol⁻¹) is _____

Q.55 The total number of pair of enantiomers possible with molecular formula C₅H₁₂O is _____

2008

10/11

Principal Manoharbhai Patel Arts, Commerce & Science College, Sadak Arjuni (Dist. Gondia) Pin Code- 441807

4 2017	
Q.56	In 200 g of water, 0.01 mole of NaCl and 0.02 mole of sucrose are dissolved. Assuming solution to be ideal, the depression in freezing point of water (in *C) will be
	[Given: $K_f(H_2O) = 1.86 \text{ K kg mol}^{-1}$]
Q.57	The adsorption of a gas follows the Langmuir isotherm with $K = 1.25 \text{ kPa}^{-1}$ at 25 °C. The pressure (in Pa) at which surface coverage is 0.2 is
Q.58	The separation of 123 planes (in nm) in an orthorhombic cell with $a = 0.25$ nm, $b = 0.5$ nm and $c = 0.75$ nm is (final answer should be rounded off to two decimal places)
Q.59	A vessel contains a mixture of H_2 and N_2 gas. The density of this gas mixture is 0.2 g L^{-1} at 300 K and 1 atm. Assuming that both the gases behave ideally, the mole fraction of N_2 (g) in the vessel is (final answer should be rounded off to two decimal places)
	[Given: $R = 0.082 \text{ L}$ atm mol ⁻¹ K ⁻¹ , atomic wt. of hydrogen = 1.0 and atomic wt. of nitrogen = 14.0]
Q.60	Consider an isothermal reversible compression of one mole of an ideal gas in which the pressure of the system is increased from 5 atm to 30 atm at 300 K. The entropy change of the surroundings (in $J K^{-1}$) is (final answer should be rounded off to two decimal places)
	[Given: $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$]

END OF THE QUESTION PAPER

2508

Principal

Abmoharbhaí Patel Arts, Commerce
& Science College, Sadak Arjuni
(Dist.Gondia) Pin Code- 441897

JAM 2017 ANSWER KEY

Model Answer Key for CY Paper

	KEY RANGE	0.35 to 0.39	200 to 200	0.14 to 0.15	0.10 to 0.12	14,80 to 15.00										
(NAT Type	Q. No.	26 0.	57 2(28 0	29 0	60										
SECTION - C (NAT Type)	KEY RANGE	4 to 4	3 to 3	0 to 0	3 to 3	2 to 2 or 4 to 4	4 to 4	700 to 700	33 to 33	27.90 to 28.10	0.05 to 0.05	11.30 to 11.38	128 to 130	408 to 409	216 to 216	
	Ö. No.	41	42	43	44	45	46	47	48	49	20	51	52	53	54	
CTION - B (MSQ)	KEYS	A, D	A, C	A, B	B, C	A, C, D	A, D	В, С, D	A, B, C	A, C, D	A, B					
SEC	Q. No.	31	32	33	34	35	36	37	38	39	40					
Ĉ	KEY	A	C	B	A	A	D	O	O	В	D	D	A	B	В	
- A (MCC	O. No.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	
SECTION - A (MCQ)	KEY	0	B	Q	O	D	V	0	O	Ω	0	æ	O	Q	æ	
S	O. No.	0.1	02	03	04	90	90	20	80	60	10	4-	12		14	-

Principal
Manufarthan Patel Vite, Commerce
& Science College, Sodak Vijani
(Dist Conduction College 4443807)

Manoharbhai Patel College of Arts, Commerce & Science

Sadak Arjuni, Dist. Gondia-441807

BIOTECHNOLOGY - BT JAM 2017

			SE	CHON-A	
			MULTIPLE CHO	DICE QUESTIONS	S (MCQ)
0.1-	O.10 c	arry one	mark each.		
Q.1			ng site of an antibody i	s present	
	. ,	he constan he variable	_	(B) at the C-te (D) between t	erminal he constant and the variable region
Q.2	Which	of the follo	owing is NOT involved	l in eukaryotic transla	tion?
	(A) Ril	bosome	(B) Spliceosome	(C) mRNA	(D) tRNA
Q.3	Which	of the foll	owing statements is con	тест?	
	(B) Gr (C) Gr	am negativ am negativ embrane	ve bacteria are colored pe e bacteria are common ve bacteria cell wall con Gram negative bacteria	ly more resistant to an sists of a thick layer of	ntibiotics than Gram positive bacteria of peptidoglycan outside the plasma
Q.4	The ro	le of enzyr	me E synthesized by ph	age φX174 during ho	st infection is to
			oglycan synthesis netabolism		synthesis of viral +RNA dsDNA replication
Q.5	Amon	g CH4, H20 ent bond (X	O, NH ₃ and PH ₃ , the modern the central	olecule having the sm al element (X = C, O,	allest percent s character for the N or P) and hydrogen is
	(A) C	H ₄	(B) H ₂ O	(C) NH ₃	(D) PH ₃
Q.6	The re	esult of an o	electrophoretic separati	on of a mixture of amints of X, Y, and Z ar	ino acids X , Y and Z at $pH = 5.0$ is e 9.87, 3.22 and 5.43, respectively)
	(A)	$\ominus Q$	O Z	Q (+)	
	(B)	\ominus $\bigcup_{\mathbf{Z}}$	Q X	Q \oplus	
	(C)	(a)	Q X	Q_{Z} Θ	31813
	(D)	9 0		Q •	Principal Manabachhui Patel Arts, Con

& Science College, Sadak Arjuni (Dist. Gondia) Pin Code- 441807

- cos(x + yx) =0.7
 - (A) cos(x)cos(yx) sin(x)sin(yx)
- (B) cos(x)cos(yx) + sin(x) sin(yx)
- (C) $\cos(x)\sin(yx) \sin(x)\cos(yx)$
- (D) cos(x) sin(yx) = sin(x) cos(yx)
- If $\begin{bmatrix} \mathbf{x} & \mathbf{y} \\ \mathbf{p} & \mathbf{q} \\ \mathbf{u} & \mathbf{v} \end{bmatrix} \mathbf{R} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then the order of R is
 - $(A)2 \times 3$
- $(B)3 \times 2$
- (C) 2 × 2
- (D) 3×3
- The average energy of a diatomic gaseous molecule at temperature T is $\frac{5}{2}$ k_BT where k_B is 0.9 Boltzmann's constant. The average energy of this molecule per degree of freedom is
 - $(A)^{\frac{1}{2}}k_BT$
- $(B)^{\frac{2}{3}}k_BT$
- (C) k₈T
- $(D) \frac{3}{2} k_B T$
- Q.10 The refractive index of diamond is 2.419. If the speed of light in vacuum is 3 × 108 m s⁻¹, then the speed of light in diamond is
 - (A) $1.240 \times 10^8 \text{ m s}^{-1}$ (B) $1.352 \times 10^8 \text{ m s}^{-1}$ (C) $1.521 \times 10^8 \text{ m s}^{-1}$ (D) $2.433 \times 10^8 \text{ m s}^{-1}$

Q. 11 - Q. 30 carry two marks each.

- Q.11 Which of the following is true of protein synthesis ONLY in prokaryotes?
 - (A) Translation and transcription are coupled
 - (B) The codon AUG codes for the start signal
 - (C) The tRNA anticodon can bind to two or more different codons
 - (D) The functional ribosomes contain two subunits constructed of proteins and RNA
- Q.12 Match the entries in Group I with that in Group II

Group I

Group II

- P) Phytase
- 1) paper and pulp processing
- Q) Xylanase
- 2) delignification
- R) Laccase
- S) Bromelain
- 3) gluten complex reduction
- 4) improve mineral availability
- 5) phosphorylation
- (A) P-4, Q-1, R-3, S-5

(B) P-4, Q-1, R-2, S-3

(C) P-5, Q-4, R-5, S-2

- (D) P-5, Q-1, R-2, S-3
- Q.13 If an aldol cleavage of glucose-6-phosphate occurs in glycolysis, it will result in
 - (A) products of equal carbon chain length
- (B) products of unequal carbon chain length
- (C) removal of phosphate group
- (D) three C2 compounds

BT

			Hills Guarten
AM 2017	and the contract of the second se	page agreement to the first to the second of	
Q.14	The natural geographical	distribution of kang	arons is limited to the Australian continent because
	(A) abiotic factors determ	nine the distribution	
	my dimensal is limited by	v accessibility to oth	er continents
	ICA Language baye not s	elected habitats in ot	DOL COMMUNICA
	(D) predators limit the di	stribution in other co	mineres
23.18	Which of the following	s NOT an example of	of an adaptive defense mechanism against predation?
Q.15			(B) Insect that resembles a stick
	(A) Bright colors of bird	politinated flower	(D) Spines on porcupine
	(C) Nicotine in the tobac	со рын	(5)
Q.16	Match the entries in Gro	oup I with that in Gro	oup II
	Group I	Group II	
	man al al al a	1) lipid storage	
	P) Nucleolus Q) Sphaerosomes	2) breakdown of fi	atty acids
	R) Peroxisomes	3) transport of ma	cromolecules
	S) Plasmodesmata	4) RNA synthesis	
	(A) P-4, Q-3, R-1, S-2		(B) P-4, Q-1, R-2, S-3
	(C) P-2, Q-1, R-3, S-4		(D) P-1, Q-3, R-4, S-2
	(C) F-2, Q-1, K-3, 3 Y		
Q.17	The nitrogenase of diag	zotrophs	
	(A) contains Cu-S cent	er and uses 12 NADI	H to reduce one N ₂
	(AE-	AC) aluctor and uses I	K PATING INTERIOR
	(C) is a compley of Fe.	nrotein and More-D	rotein and uses to Attractor
	(D) is a MoFe protein	and uses 4 ATP and	4 FMNH ₂ to reduce one N ₂
0.1	B During eukaryotic cell	division, the amount	t of DNA doubles
Q.10			
	(A) between prophase(B) between prophase	Land prophase II of	meiosis
	(C) between the G1 ar	d G2 phases of the c	ell cycle
	(C) Detween the ST a	- of the cell cycle	

- (D) during the M phase of the cell cycle
- Q.19 The correct sequence of the following events in the human female reproductive cycle is
 - 1: Secretion of FSH
 - II: Growth of corpus luteum
 - III: Growth of follicle and oogenesis
 - IV: Ovulation
 - V: Sudden increase in the levels of LH

- $(A) \ I, \ II, \ IV, \ V, \ III \qquad (B) \ II, \ I, \ III, \ IV, \ V \qquad (C) \ \ I, \ III, \ V, \ IV, \ II \qquad (D) \ I, \ V, \ III, \ IV, \ II$

157

Principal Manufarbhai Palel Arts, Commerce & Science Coffege, Saduk Arjuni (Dist.Condia) Pin Code: 443807

Q.20 The major product formed in the following reaction is

OHC (A)

(B)

(C)

Q.21 The reaction that produces o-bromophenol as the major product is

(B)
$$\stackrel{\uparrow}{\bigvee_{N \equiv N}} \stackrel{Br}{ Br}$$
 $\stackrel{H_2O}{\longrightarrow}$

- Q.22 For an autocatalytic second order reaction $R \rightarrow P$, the rate law is [where v is rate of the reaction and k is the rate constant]
 - (A) v = k[R]
- (B) v = k [R][P]
- (C) $v = k [R]^2$ (D) $v = k [P]^2$

(Dist. Gondan) Pin Code- 441807

- 0.23 In metal-carbonyl complexes, the π-back bonding is
 - (A) $p\pi d\pi$ type

(B) dn - dn type

(C) $d\pi - \pi^*$ type

- (D) dπ σ* type
- Q 24 If u(x) and v(x) are differentiable at x = 0, and if u(0) = 5, u'(0) = -3, v(0) = -1 and v'(0) = 2, then the value of $\frac{d}{dx} \left(uv + \frac{u}{v} \right)$ at x = 0 is
 - (A) -20
- (B) -7
- (C) 6
- (D) 13
- Q.25 Two dice are thrown simultaneously. The probability that the sum of the numbers obtained is divisible by 7 is
 - (A) $\frac{1}{6}$
- (B)) $\frac{1}{36}$
- (C) 0
- (D) $\frac{1}{18}$
- Q.26 If one of the diameters of a circle has end points (2, 0) and (4, 0), then the equation of that circle is
 - (A) $x^2 3x + y^2 + 5 = 0$

(B) $x^2 - 4x + y^2 + 6 = 0$

(C) $x^2 - 5x + y^2 + 7 = 0$

- (D) $x^2 6x + y^2 + 8 = 0$
- Q.27 If $P = \{1, 2, -1, 3\}$, $Q = \{0, 4, 1, 3\}$ and $R = \{1, 6, 7\}$, then $P \cap (Q \cup R) = \{1, 1, 2, -1, 3\}$
 - $(A) \{1, 2\}$
- $(B) \{1, 3\}$
- (C) {2, 1}
- (D) $\{2,3\}$
- Q.28 The position of a particle along the y-axis is $y = P t^4 + Q$. For the equation to be dimensionally consistent, the dimension of P in terms of length [L] and time [T] is
 - (A) LT-1
- (B) LT-2
- (C) LT-3
- (D) LT-4
- Q.29 Two inductors P and Q having inductance ratio 1:2 are connected in parallel in an electric circuit. The energy stored in the inductors P and Q are in the ratio
 - (A) 1 : 4
- (B) 1:2
- (C) 2:1
- (D) 4:1
- Q.30 A body X of mass M moving with velocity v hits a stationary body Y of mass m. If M >> m and X moves with the velocity v', then the velocity of Y after an elastic collision is
 - (A) 2v
- (B) v + v'
- (C) v v'
- (D) 2v'

BT

07.15

Ohn Comba Par Cour 441807

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q. 3	1 -	Q.	40	carry	two	marks	each.
------	-----	----	----	-------	-----	-------	-------

- Q.31 The cells involved in allergic reactions and containing surface receptors of IgE antibodies and histamine are

 (A) Basophils (B) Mast cells (C) Monocytes (D) Neutrophils
- Q.32 Which of the following is(are) **INCORRECT** in the regulation of the *trp* operon?
 - (A) It is an example of a negatively controlled repressible operon
 - (B) The amino acid Trp inactivates the repressor
 - (C) The amino acid Trp induces the operon
 - (D) The repressor binds to the operator in the presence of amino acid Trp
- Q.33 Which of the following organs are correctly paired with their function?
 - (A) Large intestine Protein digestion
 - (B) Oral cavity Starch digestion
 - (C) Pancreas Bile production
 - (D) Small intestine Fat digestion
- Q.34 The $\Delta G^{0'}$ for homolactic fermentation converting glucose to lactate is -196 kJ mol⁻¹. If $\Delta G^{0'}$ for the formation of ATP is +30.5 kJ mol⁻¹, then
 - (A) homolactic fermentation is 31% energy efficient
 - (B) the efficiency of energy conservation is 69%
 - (C) the energy stored in the form of ATP is 31%
 - (D) the process results in the loss of 31% of energy
- Q.35 Bacterial plasmid genes of non-chromosomal origin are associated with
 - A) providing resistance against antibacterial agents
 - B) the degradation of toxic materials
 - C) the production of certain toxins
 - D) the transfer of genetic material from one cell to another cell
- Q.36 The elements with atomic numbers 19, 37 and 55
 - (A) form cubic chloride salts with the coordination number of cation being 6
 - (B) form ionic fluorides with general formula MF
 - (C) have lowest density of solids in their respective periods
 - (D) have lowest ionization energy in their respective periods
- Q.37 Fehling's solution
 - (A) contains a copper complex of tartaric acid
 - (B) forms a brick-red precipitate with glucose
 - (C) forms a white precipitate with aldehydes
 - (D) is used as a test reagent for reducing sugars

BI

** Principal
**Alzanbachkai Patel Arts, Commerce
& Salema College Solide Argum
(Distanguar Uni Code 441807)

- Q.38 Which of the following point(s) lies(lie) on the plane 2x + 3y + z = 6?
 - (A)(0,0,6)
- (B)(0,2,0)
- (C)(1,1,1)
- (D) (3, 0, 0)
- Q.39 Kinetic theory of an ideal gas is based upon the following assumption(s)
 - (A) Gases are made of molecules with negligible volume
 - (B) The gaseous molecules do not possess kinetic energy
 - (C) The molecules are in constant random motion
 - (D) Intermolecular forces of attraction are negligible
- Q.40 The electric field and capacitance of a capacitor in the absence of dielectric material are E and C, respectively. When the capacitor is filled with a dielectric material, the electric field and capacitance of the capacitor becomes E' and C', respectively. Which of the following is(are) correct?
 - (A) E' > E and C' = C

(B) E' < E and C' > C

(C) E' = E and C' > C

(D) E' > E and C' < C

SECTION - C

NUMERICAL ANSWER TYPE (NAT)

O. 41 - O. 50 carry one mark each.

Q.41 Antigen and antibody interaction is shown by the following scheme

$$Ab + Ag = \frac{k_1}{k_{-1}} Ab - Ag$$

Where Ab is antibody, Ag is antigen and Ab-Ag is antigen-antibody complex. The values of k_1 and k_{-1} are $5 \times 10^{-5} \,\mu\text{M}^{-1}$ s⁻¹ and $2 \times 10^{-7} \,\text{s}^{-1}$, respectively. The dissociation constant for the complex is ______ nM.

- Q.42 The population of a bacterial culture increases from one thousand to one billion in five hours. The doubling time of the culture (correct to 1 decimal place) is _____ min.
- Q.43 The K_M and v_{max} of lactate dehydrogenase for conversion of pyruvate to lactate are 1 mM and 5 nM s⁻¹, respectively. At 0.25 mM pyruvate, the velocity of the reaction catalyzed by lactate dehydrogenase is _____ nM s⁻¹.
- Q.44 A linear DNA contains five restriction sites for EcoRI and three restriction sites for BamHI. The number of fragments that will be generated after digestion with EcoRI is ______.

Β.

8/10

Principal
Manoharbhai Paud Arts, Commerce
& Science College, Sadak Arjuni
(Dist.Condia) Pia Code-441807

Q.45 Total number of singlets observed in the ¹H NMR of the following compound is

- Q.46 The [H*] of 0.1 N acetic acid solution is 1.33×10^{-3} . The pH of the solution (correct to two decimal places) is _____.
- Q.47 The positive root of the equation $x^4 + x^2 2 = 0$ is _____.
- Q.48 $\int_0^1 x \, dx + \int_1^2 (2-x) \, dx = \underline{\qquad}$
- Q.49 One gram of radioactive nuclei with a half life of 300 days is kept in an open container. The weight of nuclei remaining after 900 days (correct to 1 decimal place) is _____ mg.
- Q.50 Two sources P and Q produce electromagnetic waves with wavelengths λ and 2λ, respectively. Source P ejects a photon with a maximum kinetic energy of 4.0 eV from a metal with work function 2.0 eV. The maximum kinetic energy (eV) of a photon ejected by source Q from the same metal is ______.

Q. 51 - Q. 60 carry two marks each.

- Q.51 The standard oxidation potentials for oxidation of NADH and H₂O are + 0.315 V and -0.815 V, respectively. The standard free energy for oxidation of 1 mole of NADH by oxygen under standard conditions (correct to 1 decimal place) is ______ kJ. [Faraday Constant is 96500 C mole⁻¹]
- Q.52 The K_M and v_{max} of an enzyme are 4 mM and 0.1 nM h⁻¹ respectively. In the presence of 1.5 mM inhibitor, the K'_M and v'_{max} of the enzyme are 6 mM and 0.1 nM h⁻¹, respectively. The value of inhibition constant, K_I (correct to 1 decimal place) is ______ mM.
- Q.53 The relationship between $log_{10}(MW)$ [where MW = molecular weight in kDa] of a mixture of protein standards and their retention factors (R_i) obtained from native-PAGE is $log_{10}(MW) = -2R_f + 3$. If the measured retention factor for a protein with 180 amino acids is 0.5, then the number of identical monomers in the protein is ______.

Q.54	In bacteria, a ribosome synthesizes a protein containing 300 amino acids from mRNA in 20 seconds. If the average lifetime of a mRNA is 2 minutes, the number of ribosomes that can translate a single mRNA containing 1350 nucleotides is
Q.55	In 2 N H ₂ SO ₄ , an organic compound shows fluorescence with quantum yield, $\phi_f = 0.42$ and fluorescence rate constant, $k_f = 5.25 \times 10^7 \text{ s}^{-1}$. The observed fluorescence life time of it under the same conditions (correct to 1 decimal place) is ns.
Q.56	In acidic solution, permanganate ion is reduced by ferrous ion. The number of electrons involved in the reduction of permanganate ion is
Q.57	If \vec{a} and \vec{b} are unit vectors and the angle between them is $\frac{\pi}{3}$, then the magnitude of $\vec{a} - \vec{b}$ is
Q.58	Using the letters in the word TRICK a new word containing five distinct letters is formed such that T appears in the middle. The number of distinct arrangements is
Q.59	An X-ray tube operates at 30 kV. If one electron converts 10% of its energy into a photon at first collision, then the wavelength of the photon (correct to two decimal places) isÅ. [h = $4.14 \times 10^{-15} \text{ eVs}^{-1}$, c = $3 \times 10^3 \text{ ms}^{-1}$ and e = $1.6 \times 10^{-19} \text{ C}$]
Q.60	In a mass spectrometer, a deuteron with kinetic energy 17 MeV enters a uniform magnetic field of 2.4 T with its velocity perpendicular to the field. The deuteron moves in a circular path in the magnetic field. The radius of its path in the magnetic field (correct to two decimal places) is cm. [mass of deuteron is 3.34×10^{-27} kg, 1 MeV = 1.6×10^{-13} J and e = 1.6×10^{-19} C]

END OF THE QUESTION PAPER

BT

10/10

Principal Manoharbhai Patel Arts, Commerce & Science College, Sadak Arjuni (Dist.Gondia) Pm Code- 441807

JAM 2017 ANSWER KEY

Model Answer Key for BT Paper

ape	Paper: BIO I ECHNOLOGY		500						
(J)	SECTION	- A (MCQ)	ĝ	SEC	ECTION - B (MSQ)		SECTION – C (NAT Type)	C (NAT Ty	(ad
O. No.	KEY	Q. No.	KEY	Q. No.	KEYS	Q. No.	KEY RANGE	Q. No.	KEY RANGE
01	O	16	В	31	A, B	41	4 to 4	99	5 to 5
02	Ω	17	O	32	B, C	42	14.0 to 16.0	22	1 to 1
03	B	18	O	33	B, D	43	1 to 1	58	24 to 24
04	A	19	O	34	A, C	44	6 to 6	29	4.10 to 4.20 or 0.00 to 0.01
05	Q	20	A	35	A, B, C, D	45	3 to 3	09	34.00 to 36.00
90	A	21	A	36	B, C, D	46	2.86 to 2.89		
20	A	22	В	37	A, B, D	47	1 to 1		
80	A	23	O	38	A, B, C, D	48	1 to 1		
60	A	24	O	39	A, C, D	49	124.0 to 126.0		
10	4	25	⋖	40	B or C or B, C	20	1 to 1		
1-	⋖	26	Q			51	-219.0 to -217.0		
12	В	27	B			52	2.9 to 3.1		
5	Ω	28	Ω			53	5 to 5		
14	Ω	29	O			54	4.0 to 4.1		
15	A	30	В			22	7.9 to 8.1		

Manoharbhai Parel Vets, Commerce & Science College, Satak Arjuni (Dist.Gonda) Pin Code, 441807